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Abstract 

The closed-loop dynamic behavior of a chemical reactor with two consecutive and oscillatory exothermic reactions is analyzed. When 
bounds are imposed on the control input, equilibrium points induced by saturation (EPIS) are generated. In this case, the reactor dynamic 
trajectories are deviated towards the EPIS and their convergence to the set-point is no longer guaranteed. By means of bifurcation analysis, 
necessary and sufficient conditions are derived to obtain quasi-optimal regulatory control and to avoid the presence of EPIS. Simulation 
studies proved the advantages of implementing these conditions, giving smooth responses with no oscillation. 
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1. Introduction 

The dynamic behavior of chemical reactors with two con- 
secutive exothermic reactions is highly non-linear, particu- 
larly in the case of chemical reactors that present steady-state 
multiplicity, periodic or chaotic response to perturbations, as 
shown by Bilous and Amundson [ 11, Hlavlcek et al. [ 21, 
Pikios and Luss [ 31, Balakotaiah and Luss [ 41, Jorgensen 
and Aris [ 51, and Gray and Scott [ 61. For the chemical 
industries, it is important to control reactors with this type of 
behavior, over a wide range of operating conditions and in 
the presence of strong perturbations, in order to achieve suc- 
cessfully high levels of safety and efficiency. Commonly, the 
industrial control systems are linear in nature; unfortunately, 
these control schemes are only valid in a small region of the 
state space around a nominal point. When high productivity 
and tight quality are demanded for the processes, it is nec- 
essary to apply non-linear control algorithms that perform 
well for a wide range of operating conditions. In addition, 
most of the actuators have physical bounds to their operation. 

In this work, we addressed the non-linear control problem 
for a chemical reactor, subject to constraints on its control 
input, in which two consecutive exothermic reactions with 
oscillatory behavior take place. First, the derivation of the 
open-loop reactor model is presented, after which the basis 
for the proposed bounded control strategy is discussed. By 
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means of an exact linear transformation, a non-linear single 
input-single output control algorithm is developed, which is 
globally and asymptotically stable and with no saturation. 
When bounds are imposed to control input, we detected the 
generation of equilibrium points induced by saturation 
(EPIS). In this case, the reactor dynamic trajectories are 
deviated towards the EPIS and their convergence to the set- 
point is no longer guaranteed. With the help of a bifurcation 
map of the reactor model, the system’s response is forced to 
behave according to the desired equilibrium state; to avoid 
the EPIS, necessary and sufficient conditions are derived and 
proved via numerical simulations. 

2. The open-loop reactor 

The chemical reactor has been studied previously [ 5,6]. 
The reactor temperature is regulated by means of water flow- 
ing through a cooling jacket. A stream with a reactant (A) 
enters into a well-stirred continuous flow reactor, and is con- 
verted to an intermediate (B ) and to a final product (C) . We 
have 

A-B, ratel=kl(T)a (1) 

B + C, rate2 = k2( T)b (2) 
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Fig. 1, (a) Temperature, (b) reactant A concentration evolution and (c) phase plane of the open-loop reactor with initial conditions cy = 0.0, j3 = 0.0, B= 2.0. 

Both steps are first-order processes: exothermic and with 
rate constants of Arrhenius temperature dependence. Thus, 
we have 

Energy and mass balances give the following governing 
equations: 

(b,-b) +k,a-k,b 

+( -AH,)k,b- ; UA,(T-T,) 
0 

(5) 

The conditions imposed on the reactor model are as fol- 
lows: (a) there is no inflow of B or C, i.e. b. = co = 0; (b) 
both reactions have the same activation energy, i.e. El = E2; 
(c) both reactions have the same heats of reaction, i.e. 
AH, = AH2; and (d) the inflow temperature is the same as 
that of the cooling jacket water, i.e. To = T,. 

Using the mean residence time and the reactant A inflow 
concentration as the time and concentrations scales, weobtain 

$=1--a- +aexp(O) 
( 1 ‘h 

(8) 

(9) 

in which the dimensionless concentrations and temperature 
are given by 

a = alao, /3 = b/a,, 

8=E,(T-T,jIRT;, r=tltres (10) 

Parameters such as the chemical time, the reaction rate 
ratio, the dimensionless temperature of the cooling jacket 
water and the Newtonian cooling time are respectively given 
bY 

r&= l/k,t,,, +=A,IA,, 

tl,= (-AH,ja&IC,pRT~ (11) 

TN = tivltrcn = QVI u&t,, (12) 

The dynamic behavior of the autonomous reactor is highly 
complex for the following parameter values: 7ch = 1.81, 
0,= 17.5, +=O.Ol and TN=O.14. In this case, the reactor 
has one unstable equilibrium point, ep = ( cu, = 0.2634, 
/3, = 0.7 166, 0, = 1.6261). The instability of this equilibrium 
point stems from the values of the Jacobian eigenvalues: 
A = ( - 1.0299, 0.3227 +4.3534i, 0.3227 -4.3534i), pro- 
ducing chaotic behavior or limit cycles with one, two, four 
or eight periods [ 61. Fig. 1 (a) and 1 (b) show the open-loop 
dynamic behavior of the reactor for the parameter values 
mentioned above. In Fig. 1 (a), we can see a two-period oscil- 
latory behavior of the dimensionless temperature. Fig. 1 (c j 
shows the phase plane of the autonomous reactor. Here, we 
see the two-period limit cycle and the equilibrium point posi- 
tion. Reactors with this type of behavior make the application 
of a linear control scheme a difficult task. 

3. The closed-loop reactor without saturation 

To develop the control law, the reactor temperature is 
selected as the controlled variable and the temperature of the 
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cooling water is taken as the manipulated variable. This 
choice of the manipulated variable is made to simplify the 
control problem, because a simple relation between the vol- 
umetric flow and temperature of the cooling water exists, by 
means of a heat balance, in the cooling jacket [ 71. 

Using the standard notation for dynamical systems, the 
reactor mathematical model can be expressed as 

[;;I = fp] + [~;~Z][~$ (13) 

where 

[Xl %%I = [a P 01 (14) 

-(l+r,‘)e g, (x> [ I[ 0 &(X1 = 0 g3(x) exp(~)(~+~~)~~ch 1 
and 

l”l 4 uSl = F” O Ojl 

The output error can be defined as 

e(t) = e(t) - esp 

$=l-(l+C,)xT 

x2* = C,xT - ( 1 + &)x2* 

where 

~I=[ex~(~s,)l~~ch~ G= [~ex~(&,)l/~,~ 

Solving Eqs. (22) and (23) gives 

x~*=[x&--(C3+C4)] exp[ -(l+&)r] +C, 

exp[ -(l+C,)r] +C, 

where 

(16) 

(17) 

(‘8) 

where the temperature set-point is chosen as the open-loop 
equilibrium temperature, i.e. e,, = 0, = 1.626 1. If an integral 
control action is desired, then one can impose on the error the 
behavior that 

i+Ke=O 

and it is guaranteed that 

(19) 

lim e(t) = 0, lim e(t) = es, (20) t+m t+-a 

whenever the control gain K is greater than zero. 
From Eqs. ( 13)-( 19), the following control law is 

obtained: 

The reactor will be controllable under the control law given 
by Eq. (21) if g3(x) ZO; as we can see in Eq. (16), this is 
satisfied, because all the parameters of the system are greater 
than zero. 

The control law derived will affect only 0 (or x3); the 
dynamics of cr (or xi) and p (or x2) then constitute the 
internal dynamics of the system [ 81. To ensure the stability 
of the closed-loop system, the internal dynamics must also 
be stable. Given that the control law regulates only the behav- 
ior of 0, analysis of the internal dynamics is limited to the 
behaviors of (Y and p while 0 is kept constant; therefore, 
Eq. ( 13) is reduced to the pair of equations 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

From Eqs. (25) and (26), the reactor internal dynamics 
are asymptotically stable, provided that CL and C, are always 
greater than zero, with 

1 
‘E”:: = [ 1 + exp( es,) ] / rch = % (29) 

and 

(30) 

From Eqs. ( 18)-(20), (29) and (30)) it is easy to see 
that, for the closed-loop reactor without bounds on the control 
input, its equilibrium point (x,) corresponds to the equilib- 
rium point of the open-loop reactor (er) : 

limx(t) =x,=e,= Ia,, p,, S,] 
f-m 

(31) 

Numerical simulations of the closed-loop reactor without 
saturation allow us to obtain the time evolution of the dimen- 
sionless A concentration and temperature, respectively, as 
depicted in Fig. 2(a) and 2(b) for a control gain of K = 1 .O, 
and for the initial conditions A = (0.0, 0.5, 0.5)) B = (0.0, 
0.5,3.0), C= (1.0,0.5,0.5) and D= (1.0,0.5,3.0). We can 
observe the disappearance of oscillatory behavior, and the 
stabilization of these variables at the reference values. 
Fig. 2(c) shows the time evolution of the control input in the 
absence of bounds; the control input reaches unrealistic val- 
ues, as a result of the absence of bounds. The phase plane of 
Fig. 2(d) shows the convergence of all the trajectories 
towards the set-point; this proves the asymptotic stability of 
the reactor operating under the control algorithm without 
bounds on the control input. 
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4. The saturation control problem 

It is well known that all process variables have lower and 
upper bounds that arise from factors such as the equipment 
size, design conditions and safe operating conditions. Areac- 
tor operating under bounds on the control input can be 
expressed mathematically as 

i=mj +g(+,,,w (32) 

where 

u+ 

I- 

if U(X) 3 ~4+ 
usat = u(x) if up <U(X) <u+ (33) 

U if u(x) I U- 

and u- and LL+ are the lower and upper bounds of the control 
input u respectively. The equilibrium point of the reactor 
under input saturation (x,) can be obtained by solving 

f(-G) +‘g(xs)k3t(xs) =o (34) 

Commonly, X, #xc, which means that the control input 
saturation creates new equilibrium points, deviating the tra- 
jectories far away from the set-point and destroys the asymp- 
totic stability of the reactor. To illustrate this, numerical 
simulations were carried out; the results can be seen in Fig. 3 
for UT =0 and UC = 10.0, and the initial conditions A, B, C 
and D mentioned above. Fig. 3 (a) and 3 (b) show the curves 
for the dimensionless temperature and reactant A concentra- 
tion, and its stabilization far away from its reference values. 
Fig. 3 (c) shows the time evolution of the control input for 
this case; the control input reaches its maximum value fixed 
by its upper bound, and remains saturated for the entire time 

period considered. Fig. 3 (d) shows the phase plane for this 
bounded case, indicating the presence of an EPIS. Fortu- 
nately, X, can be determined from a bifurcation analysis of 
the open-loop reactor, in which the bifurcation parameter is 
the input control variable, as shown in Fig. 4. For this anal- 
ysis, the equilibrium points of the open-loop reactor are 
obtained by solving Eqs. (7)-(9) at the steady state and 
taking as the bifurcation parameter the control input 13,. 

If the bound values are known, then one can locate the 
EPIS. In Fig. 4, the lower and upper bounds of the control 
input are located at the horizontal axis, and the corresponding 
equilibrium value of dimensionless temperature is located 
through the bifurcation curve at the vertical axis. 11,~ = 17.5 
is the control input associated with es,, i.e. the dimensionless 
temperature set-point, and can be found by equating the out- 
put error to zero for the control law given by Eq. (21). Thus, 
we have 

II sp = 
53(x,) 
g3 (xe) 

(35) 

For example, for UT = 10.0, Fig. 4 predicts that the dimen- 
sionless temperature will be stabilized at 0.6304, which is 
verified in the phase plane shown in Fig. 3 (d) . 

5. Solution of the bounded control problem 

Traditionally, the bounded control problem has been 
bypassed by transferring it to the tuning step, in which the 
control gain is maintained around a small value to avoid 
control input saturation [9]. However, this approach pro- 
duces control systems with conservative dynamic responses, 
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Fig. 4. Bifurcation map of the chemical reactor for EPIS locating 

which are unacceptable for high efficiency and productivity 
operating conditions. Following Alvarez et al. [ 91, the 
bounded control problem given by Eq. (32) can be solved 
if, for certain values of the upper and lower bounds, it is 
verified that x, = xe, i.e. if the equilibrium point of the closed- 
loop reactor under bounds on the control input is the same as 
the equilibrium point of the closed-loop reactor without 
bounds on the control input. 

When the input control is upper saturated, it can be verified 
from Eqs. (21) , (33) and (34) that 

+- h(x) +‘&(x)h - 0 (36) 

and 

‘%p I”+ 0.0 I ,3 
10.0 12.5 15.0 17.5 20.0 22.5 ; .O 

where 0, and 0, are the closed-loop equilibrium reactor Control input, dimensionless 

temperatures with and without saturation on the control in- Fig. 5. Bifurcation map of the chemical reactor for the avoidance of EPIS. 

put respectively. From Eqs. (36) and (37)) we obtain the 
inequality 

8,s 0, (38) 

Similarly, for lower saturation, we have 

h(x) +g3(x)G =o (39) 

and 

&) [ -K(&- &I -h(x) J lu; 

which implies that 

es 2 f3, (41) 

Eqs. ( 38) and (4 1) give the necessary conditions to obtain 
equilibrium points induced by upper or lower saturation. 
When these conditions are reversed, we obtain the necessary 
and sufficient conditions to avoid the presence of equilibrium 

2.5.. 
2.0911 (No presence of EPIS) 
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Fig. 6. (a) Temperature evolution for the closed-loop reactor with bounds on the control input and satisfying the conditions found here, where the control gain 
K= 1 .O, and the bounds are UT= 0.0 and UT = 20.0. (b) Reactant A concentration evolution. (c) Control input evolution. (d) Phase plane of the closed-loop 
reactor. Initial conditions in all cases: A= (0.0.0.5, 0.5), B= (0.0, 0.5, 3.0). C= (1.0, 0.5, 0.5) aad D= (1.0,0.5, 3.0). 

points induced by saturation (i.e. allowing x, =x,) . Thus, for 
upper saturation of the control input, we have 

4 2 0, 

and, for lower saturation, we have 

(42) 

es I e, (43) 

To illustrate the application of these necessary and suffi- 
cient conditions, numerical simulations were carried out for 
a lower bound u; = 0.0 and an upper bound u$ = 20.0. From 
the bifurcation map plotted in Fig. 5, the dimensionless equi- 
librium temperature under saturation ( f3,) associated with the 
upper bound is equal to 2.0911. For this case, it is easy to see 
that the condition given by Eq. (42) is verified, which means 
that OS> (3,. In this case, the only equilibrium point will be 
the set-point, despite the bounds imposed on the control input; 
all the trajectories converge towards the set-point, although 
the control input is temporarily saturated. 

Fig. 6(a) and 6(b) present the time evolution of dimen- 
sionless temperature and reactant A concentration for the 
initial conditions A, B, C and D mentioned earlier. The values 
of the state variables are asymptotically stable and converge 
to the reference values. Fig. 6(c) shows the control input that 
corresponds to these initial conditions and a control gain of 
K = 1 .O. At the beginning of the simulation, the control input 
is saturated for initial conditions A and D; however, as time 
proceeds, the control input is desaturated, allowing t9 to reach 
its set-point, as is foreseen by the conditions derived here. 
Finally, Fig. 6(d) presents the phase plane for this case, 
showing the convergence of all the trajectories to the set- 
point, despite the imposed bounds on the control input. 

6. Conclusions 

The imposition of bounds on the control input for a chem- 
ical reactor in which there occurs two consecutiveexothermic 
chemical reactions results in the presence of equilibrium 
points induced by saturation, which deviate the state variable 
trajectories of the reactor far away from the set-point, destroy- 
ing the reactor asymptotic stability. For a single input-single 
output non-linear control algorithm, the solution of the 
bounded control problems was proved possible whenever 
some conditions developed in this work are satisfied. Numer- 
ical simulation results indicate the avoidance of the equilib- 
rium points induced by saturation and, consequently, the 
reactor stabilization at the set-point, despite the imposed 
bounds on the control input. 

Appendix A. Nomenclature 

a reactant A concentration 
4) concentration of A in feed 
b reactant B concentration 
bo concentration of B in feed 
AC effective jacket heat transfer area 
A, Arrhenius constant for reaction i = 1, 2 
ci internal dynamic constants, i = 1, 2, 3, 4 

CP specific heat of reacting mixture 
El activation energy for reaction ( 1) 
E2 activation energy for reaction (2) 

eP state vector for the open-loop equilibrium point 
4 rate constant for reaction ( 1) 
kz rate constant for reaction (2) 
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K 
R 
t 
tN 

t res 
T 
TC 
TO 
u 
usat 
u SP 

u- 

u+ 

u3 

V 
XI 

control gain 
universal gas constant 
time 
Newtonian cooling time 
mean residence time 
reactor temperature 
cooling water temperature 
feed temperature 
overall heat transfer coefficient 
bounded control input 
control input associated to temperature set-point 
lower bound of the control input 
upper bound of the control input 
control input (19,) 
reactor volume 
state variable (dimensionless concentration of 
reactant A) 
state variable (xt) for reactor internal dynamics 
state variable (dimensionless concentration of 
reactant B) 
state variable (x2) for reactor internal dynamics 
state variable (dimensionless temperature of 
reactor) 
state vector for the closed-loop equilibrium point 
without input bounds 
state vector for the closed-loop equilibrium point 
with input bounds 

dimensionless concentration of reactant A 
a value at open-loop equilibrium point 

dimensionless concentration of reactant B 
p value at open-loop equilibrium point 
heat of reaction for reaction ( 1) 
heat of reaction for reaction (2) 
output error 
density of reacting mixture 
reaction ratio 
reactor dimensionless temperature 
dimensionless temperature of cooling water 
f3 value at open-loop equilibrium point 
set-point for reactor dimensionless temperature 
dimensionless time 
dimensionless chemical time 
dimensionless Newtonian cooling time 
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